HYBRID EVENT: You can participate in person at Barcelona, Spain from your home or work.

10th Edition of World Congress on Infectious Diseases

June 25-27, 2026 | Barcelona, Spain

June 25 -27, 2026 | Barcelona, Spain
Infection 2026

E2 ubiquitin-conjugating enzymes regulates dengue virus-2 replication in Aedes albopictus

Speaker at Infectious Diseases Conference - Xueli Zheng
Southern Medical University, China
Title : E2 ubiquitin-conjugating enzymes regulates dengue virus-2 replication in Aedes albopictus

Abstract:

Aedes albopictus (Ae. albopictus), an important vector of dengue virus (DENV), is distributed worldwide. Identifying host proteins involved in flavivirus replication in Ae. albopictus and determining their natural antiviral mechanisms are critical to control virus transmission. Revealing the key proteins related to virus replication and exploring the host-pathogen interaction are of great significance in finding new pathways of the natural immune response in Ae. albopictus. Isobaric tags for relative and absolute quantification (iTRAQ) was used to perform a comparative proteomic analysis between the midgut of Ae. albopictus infected with DENV and the control. 3,419 proteins were detected, of which 162 were ≥ 1.2-fold differentially upregulated or ≤ 0.8-fold differentially downregulated (p < 0.05) during DENV infections. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models. The replication of DENV-2 and the knockdown efficiency of the Ubc9 gene were assessed through reverse transcription–quantitative polymerase chain reaction. The DENV-2-related protein expression was evaluated via Western blot analysis. The interaction between Ubc9 and DENV E and NS5 proteins was investigated through confocal immunofluorescence and co-immunoprecipitation. RNA interference technology was employed to silence Ubc9 expression in C6/36 cells and in A. albopictus mosquitoes. The expression level of Ubc9 in the DENV-2-infected group was 3.5-fold higher than that in the control group. The Ubc9 gene expression in the midgut tissue of the mosquito was significantly upregulated. Transfection of C6/36 and BHK-21 cells with the pAc5.1b-EGFP-Ubc9-HA vector led to the overexpression of Ubc9, which decreased the transcription levels of DENV E and NS1, NS5 proteins. The difference was statistically significant (F = 24.27, p < 0.01). The expression levels of DENV NS5 and E proteins significantly decreased after infection with DENV-2, suggesting that the depletion of Ubc9 may limit the replication of DENV-2. Ubc9 regulates DENV-2 replication through SUMOylation in the cells and A. albopictus, potentially affecting vector competence and DENV transmission. This is the first study to demonstrate that the Ubc9 of A. albopictus plays a significant role in regulating the replication of DENV in both mosquito cells and the mosquito itself. The study results may prove useful in designing appropriate therapeutic approaches for dengue and associated complications.

Biography:

Zheng Xueli, Professor, Southern Medical University, doctoral supervisor. In 2016, lt won the key project of the Life Science Department of the National Natural Science Foundation of China, and in 2018, it won the key project of Guangzhou. He has published more than 180 academic papers at home and abroad. It has won 3 invention patents. Chief editor of 1 textbook. As the deputy editor in chief, he participated in the compilation of Modern Tropical Medicine, a large-scale reference book, and five books. In 2018, the key science and technology for the prevention and control of important vector mosquitoes won the first prize of the Science and Technology Progress Award of the People's Government of Guangdong Province.

Watsapp